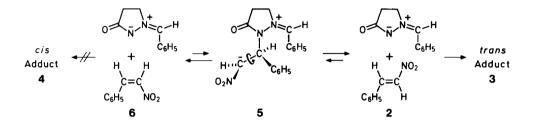

ARE ANY NON-STEREOSPECIFIC 1,3-DIPOLAR CYCLOADDITIONS KNOWN ? A REVISION

Rolf Huisgen^{*} and Rudolf Weinberger¹

Institut für Organische Chemie der Universität München Karlstr. 23, D-8000 München 2, BRD


Summary The cycloaddition of 1-benzylidenepyrazolid-3-one betaine to (E)- β -ni-trostyrene, which has been claimed to furnish 15-30% non-stereospecific product, revealed stereospecificity up to 99.92% in a renewed study; (Z)- β -nitrostyrene stereoisomerizes under the influence of the 1,3-dipole.

Diels-Alder reactions and 1,3-dipolar cycloadditions are $[{}_{\pi}4{}_{S}+{}_{\pi}2{}_{S}]$ processes which are allowed to be concerted by orbital symmetry and owe their wide scope and synthetic potential to the lack of high-energy intermediates. The configuration of the reactants must be retained in the concerted cycloaddition. Retention has been abundantly observed and substantially contributes to the great synthetic value. Rare exceptions suggest a change in mechanism.

Dorn, Ozegowski, and Gründemann² found the cycloadditions of 1-benzylidene-pyrazolid-3-one betaine $(\underline{1})$,³ an azomethine imine, to fumaric and maleic ester to be stereospecific. In contrast, the addition of $\underline{1}$ to $trans-\beta$ -nitrostyrene ($\underline{2}$) in refluxing dichloromethane yielded 15 - 30% of the *cis*-adduct $\underline{4}$ beside the normal *trans*-adduct $\underline{3}$. A two-step process *via* the zwitterion $\underline{5}$ was made responsible for the steric course. "For the first time products of a non-cisoid 1,3-dipolar cycloaddition were isolated",² and the authors were fully justified in claiming fundamental theoretical interest. The adducts $\underline{3}$ and $\underline{4}$ formed identical sodium salts and a subsequent isomerization $\underline{3} + \underline{4}$ had to be considered; nitroalkanes are *stronger acids* than phenol. Dorn *et al.*² excluded this possibility: No trans \neq cis isomerization was noticed when $\underline{3}$ was refluxed in dichloromethane with and without water or with and without 1,3-dipole 1.

We repeated the cycloaddition without special precautions using <u>1</u> and <u>2</u> in a 1:1 ratio in chloroform, dichloromethane or acetonitrile at 20-60°C. When the adduct composition was monitored by ¹H NMR analysis of the ring protons - as Dorn *et al.*² did - the content of the *cis*-adduct <u>4</u> either stayed below the analytical limit of 1.2% or a little bit above; in 1 out of 10 experiments the cis percentage reached 6%. In all experiments at $20\,^{\circ}C$ (CH₂Cl₂ or CH₃CN) the cis portion remained below 1.2%. The mechanism *via* an intermediate like <u>5</u> rigorously requires a *constant trans,cis adduct ratio* under identical experimental conditions. The vacillation of the ratio between <1.2% and 30% suggested the nonstereospecificity to be an artefact.

It is a well-tried custom to use *both geometrical isomers* of the dipolarophile for the stereochemical test. When we reacted *cis*- β -nitrostyrene (<u>6</u>) with 30 mol% of the azomethine imine <u>1</u> in CDCl₃ in the ¹H NMR tube, surprisingly, <u>6</u> was slowly converted to *trans*- β -nitrostyrene (<u>2</u>) under catalysis by the 1,3dipole <u>1</u>. In a subsequent reaction, <u>2</u> entered the cycloaddition forming <u>3</u>, and the cis,trans isomerization <u>6</u> \rightarrow <u>2</u> came to a halt when <u>1</u> was consumed; no *cis*adduct <u>4</u> was observed. Cis disubstituted ethylenes are less active dipolarophiles - and dienophiles - than the trans isomers as a result of steric hindrance of resonance. ^{4-6a} The catalysis by the 1,3-dipole <u>1</u> can be explained by a reversible nucleophilic addition to the α -position of nitrostyrene and rotation in the intermediate; <u>1</u> could become attached by the *N* atom as shown in <u>5</u> or, alternatively, by the oxygen function.

In each of the cycloadducts <u>3</u> and <u>4</u> the nitro group is flanked by a *cis-vic* and a trans-vic phenyl substituent. It would have to be the influence of the distant carbonyl function if the equilibrium constant were to deviate from value 1. In a CDCl₃ solution, 0.62 M in *trans*-adduct <u>3</u> and 0.15 M in triethylenediamine as a basic catalyst, the trans, cis equilibrium <u>3</u>:<u>4</u> = 64:36 was established within 11 min at 34°C. A rather dilute solution was required to measure the rate of stereoisomerization at 0°C starting from <u>3</u> and from <u>4</u> (Fig.1). The solid curves are calculated for first order reactions with the constants: $k_{1\psi}(\text{trans} + \text{cis}) = 5.9 \, 10^{-5} \, \text{s}^{-1}$ and $k_{1\psi}(\text{cis} + \text{trans}) = 1.2 \, 10^{-4} \, \text{s}^{-1}$. The highest yield of *cis*-adduct <u>4</u> which Dorn *et al.*² observed in their *cycloaddition* experiments was 30%, close to the equilibrium concentration.

For a renewed study of the stereospecificity of the cycloaddition a more sensitive analytical method was required. HPLC with cyclohexane/THF (75:25) on Zorbax Sil (an acidic silica gel, 70 bar, UV detector 254 nm) allowed the analysis of even 0.02% cis-adduct <u>4</u> after calibration with artificial trans,cis mixtures (<u>3</u> and <u>4</u>). In new experiments with pure materials and carefully cleaned glassware, 0.75 mmol of <u>2</u> and 0.47 mmol of <u>1</u> in 1.5 ml CHCl₃ were stirred for 48 h at room temperature. After removal of the solvent, the residue was

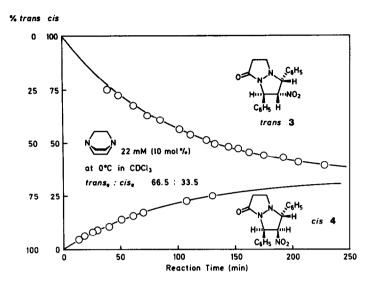


Fig. 1. Kinetics of equilibration of cis-and trans-adducts 3 and 4 (0.22 M) catalyzed by triethylenediamine (0.022 M); ¹H NMR analysis.

triturated with the HPLC solvent, filtered and analyzed. Independent runs in $CHCl_3$ (0.21, 0.29, 0.24%) or CH_2Cl_2 (0.28, 0.23%) converged at 0.25% cis content in the adduct mixture $\underline{3} + \underline{4}$.¹ In more recent experiments a teflon vessel was used; the cycloaddition in CH_2Cl_2 in the presence of a trace of trifluoro-acetic acid reached 30% conversion after 3 h and the cis, trans adduct mixture contained 0.08% cis.

In the framework of the two-step mechanism proposed by Dorn *et al.*,² a 99.92% stereospecificity would be in accord with $\Delta\Delta G^{\ddagger} = 4.2$ kcal mol⁻¹, representing the difference between the rotational barrier and the activation free energy for cyclization of the intermediate <u>5</u>. However, stray-shots of higher cis content disclosed that we are still not in full control of the reaction conditions and adventitious base catalysis cannot be ruled out. A catalysis of the equilibration of <u>3</u> and <u>4</u> by the 1,3-dipole <u>1</u> was not noticeable by ¹H NMR analysis; tests by HPLC are still required.

If the azomethine imine <u>1</u> catalyzes the cis, trans equilibration of β -nitrostyrenes, is it possible that 0.08 cis-adduct <u>4</u> is the result of a concomitant and likewise concerted addition of <u>1</u> to cis- β -nitrostyrene ? We observed by HPLC analysis that the thermal equilibrium, established from both sides by 0.2 mM triethylenediamine in CH₂Cl₂ in the dark, contains only 0.012 ± 0.004% cis- β -nitrostyrene (<u>6</u>). To reach 0.08% cis-adduct <u>4</u> in the adduct mixture, cisnitrostyrene should combine with <u>1</u> faster than trans-nitrostyrene, at variance with expectation and the experiments reported above.

We cannot fully reconstruct the reasons for the occurrence of 15 - 30 % *cis*-adduct <u>4</u> which Dorn *et al.*² observed for <u>1</u> + <u>2</u>. They reported removal of the unconsumed 1 on work-up by chromatography on silica gel. We noticed some

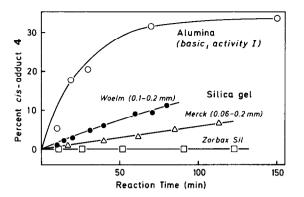


Fig.2. Stereoisomerization of trans-adduct 3 (5 ml 0.1 M in CHCl₃) by various adsorbents (200 mg) at 20°C; HPLC analysis of *cis*-adduct 4

trans + cis isomerization of $\underline{3}$ on passing a silica gel (Merck 0.06-0.2 mm) column. The catalytic activities of various adsorbents were compared by stirring with a solution of $\underline{3}$ (Fig.2). The commercial silica gels tested triggered the trans,cis isomerization - with one exception (Zorbax Sil of Du Pont de Nemours). It is no surprise that alumina is a more active catalyst than silica gel; the equilibrium concentration of 4 is nearly reached after 1 h.

The quintessence: No 1,3-dipolar cycloaddition is known which violates the principle of configurational retention. Orbital control allows concertedness, but does not forbid a two-step reaction course. The borderline between concerted and stepwise mechanism has not been transgressed as far as 1,3-dipolar cycloadditions are concerned. For Diels-Alder reactions this borderline is better explored (Reviews ^{6b,7}).

ACKNOWLEDGMENT

We express our gratitude to Professor Helmut Dorn for private communications. We kindly thank the "Fonds der Chemischen Industrie" for support.

REFERENCES

Dedicated to Professor Hans Musso on the occasion of his 60th birthday 1. Diploma Thesis R.Weinberger, University of Munich, January 1984.

- 2. H. Dorn, R.Ozegowski, and E.Gründemann, J.Prakt. Chem., 321, 555, 565 (1979).
- 3. H.Dorn and A.Otto, Chem.Ber., 101, 3287 (1968).
- 4. R.Huisgen, Angew.Chem., Int.Ed.Engl., 2, 633, 640 (1963).
- 5. J.Sauer, Angew.Chem., Int.Ed.Engl., 6, 16, 25 (1967).
- 6. R.Huisgen in "1,3-Dipolar Cycloaddition Chemistry". A. Padwa, Ed., John Wiley & Sons, New York, 1984, Vol. 1, a. p. 126; b. p. 47.
- 7. J.Sauer and R. Sustmann, Angew.Chem., Int.Ed.Engl., 19, 779 (1980).

(Received in Germany 12 August 1985)